Лабораторная работа №

<u>Тема</u>: Решение нелинейных уравнений в MsExcel

<u>Цель работы</u>: Изучение возможностей пакета Ms Excel при решении нелинейных уравнений. Приобретение навыков решения нелинейных уравнений средствами пакета.

- <u>1.</u> Найти корни полинома.
- 2. Найти решение нелинейного уравнения.

Варианты к заданию

Найти корни полинома

№	уравнение	N⁰	уравнение
1	$5x^3 - 8x^2 - 8x + 5 = 0$	9	$2x^3 + 9x^2 - 4x - 7 = 0$
2	$-x^4 + 5x^3 + 2x^2 - 15x - 9 = 0$	10	$x^4 - 8x^2 + 5x + 4 = 0$
3	$x^3 - 2x^2 - x + 1 = 0$	11	$-x^4+9x^3+2x^2-15x-5=0$
4	$x^4 - 3x^3 - 8x^2 + 2 = 0$	12	$-3x^3 + 2x^2 + 6x + 2 = 0$
5	$x^3 - 2x^2 - 6x + 4 = 0$	13	$x^4 + 5x^3 - 3x^2 + 8 = 0$
6	$2x^4 - x^2 - 10 = 0;$	14	$-x^4+8x^2+5x-1=0$
7	$x^3 - 3x^2 - 8x + 12 = 0$	15	$-x^3+6x^2-2x-5=0$
8	$0,5x^4 - 12x^3 + 15x - 5 = 0$		

Найти решение нелинейного уравнения

N⁰	уравнение	N⁰	уравнение
1	$x-2\sin(x+0,5)=0$	9	$-x^{2}-\cos(x+2)=0$
2	$x^2 - lg(x+2) = 0$	10	$\sqrt{x+6} + \sin(x) = 2,5$
3	$0,8x^2 - \sin(10x) = 0$	11	$8\cos(x) + 0.2x^3 = 4$
4	$x^{3} - 2\sin x = 0,5$	12	
5	$x^2 - \ln(x+2) = 6$	13	$\sqrt[3]{x+6} + 2\cos(x) = 0$
6	$\frac{4}{x} + x^2 = 8$	14	$\frac{4}{x} - 0, 2e^x = -2$
7	$3\ln(x) - 4\cos(x) = 3$	15	$0,2x^2 + \ln(x) - 9\sin(x) = 10$
8	$0,5x^2 - \frac{1}{x+6} = 6$		

<u>ПРИМЕР 1.</u> Найти корни полинома $x^3 + 2x^2 - 9x - 4 = 0$.

Для начала решим уравнение графически. Известно, что графическим решением уравнения f(x)=0 является точка пересечения графика функции f(x) с осью абсцисс, т.е. такое значение *x*, при котором функция обращается в ноль.

Проведем табулирование нашего полинома на интервале от -4 до 4 с шагом 0,5 (после построение графика может быть придется изменить начальное или конечное значение диапазона, а также шаг).

Затем в ячейку **B2** введем формулу для расчета значений полинома (рис. 1): =**A2^3**+**2*****A2^2**-**9*****A2**-**4**.

На графике видно, что функция три раза пересекает ось Ox, а так как полином третьей степени имеется не более трех действительных корней, то графическое решение поставленной задачи найдено. Иначе говоря, была проведена локализация корней, один корень *x*=-4 виден явно из таблицы, два других корня находятся на интервалах: [-0,5,0], [2, 2,4].

Рисунок 1

Теперь можно найти корни полинома методом последовательных приближений с помощью команды Сервис→Подбор параметра. Относительная погрешность вычислений и предельное число итераций (например, 0,00001 и 1000) задаются на вкладке Сервис→Параметры.

В качестве начальных значений приближений к корням можно взять любые точки из отрезков локализации корней. Пусть это будут -0,3 и 2,2. Введем эти

значения в ячейки **B25** и **B26**, затем в ячейку **C25** (рис. 2) введем формулу: =**B26^3**+**2*****B26^2-9*****B26-4**, которую скопируем в ячейки **C26** при помощи маркера заполнения.

Рисунок 2

После ввода начальных приближений и значений функции можно обратиться к пункту меню Сервис – Подбор параметра в Excel 2003 или Данные – Анализ «что если» – Подбор параметра в Excel2007-20016 (рис. 3) и заполнить диалоговое окно следующим образом (рис. 4), т.е мы хотим найти значение аргумента, при котором значение функции будет равно нулю.

В поле Установить в ячейке дается ссылка на ячейку в которую введена формула, вычисляющая значение левой части уравнения (уравнение должно быть записано так, чтобы его правая часть не содержала переменную). В поле Значение вводим правую часть уравнения, а в поле Изменяя значения ячейки дается ссылка на ячейку, отведенную под переменную. Заметим, что вводить ссылки на ячейки в поля диалогового окна Подбор параметров удобнее не с клавиатуры, а щелчком на соответствующей ячейке.

Сповторить Текст по тися и струпнир Санализ "что если" • 28 Разгруппир	🌠 Дополнительно) столбцам	📩 Прове	рка даннь	IX *	Диспе	чер сценари	ев	омежу
	Кочистить Повторить Повторить	Текст по	№ Удалит	ть дублика пка даннь	пы	Анализ "	дация что если" ▼	vē rpy 2€ Pas	групп

Рисунок 3

Подбор параметра	? ×
Установить в <u>я</u> чейке:	\$C\$26
Зна <u>ч</u> ение:	0
<u>И</u> зменяя значение ячейки:	\$B\$26
ОК	Отмена

Рисунок 4

После нажатия кнопки **ОК** появится диалоговое окно **Результат подбора** параметра (рис. 5) с сообщением об успешном завершении поиска решения и приближенное значение корня будет помещено в ячейку **С25**.

Результат подбора парам	? <mark>x</mark>	
Подбор параметра для яч Решение найдено.	нейки C26.	Шаг
Подбираемое значение: Текущее значение:	Подбираемое значение: 0 Текущее значение: -2,43641E-0	
	ОК	Отмена

Рисунок 5

Второй корень находим аналогично.

Результаты вычислений будут помещены в ячейки С25 и С26 (рис. 6).

	А	В	С
19	3,5	31,875	
20	4	56	
21	4,5	87,125	
22	5	126	
23			
24	Корни по	линома	
25	x1=	-4	0
26	x2=	-0,41421	-2,4E-06
27	x3=	2,41418	-0,0006
20			

Рисунок 6

<u>ПРИМЕР 2</u>. Решить уравнение $e^x - (2x-1)^2 = 0$.

Проведем локализацию корней нелинейного уравнения.

Графическим решением уравнения $e^x - (2x-1)^2 = 0$. Для этого построим график функции (рис. 7). Для этого в диапазон **A2:A22** введем значения аргумента. В ячейку **B2** введем формулу для вычисления значений функции: =**EXP(A2)-(2*A2-1)^2**.

На графике видно, что график функции пересекает ось Ox три раза. Одно из решений может быть вычислено точно: x=0

Для второго корня можно определить интервал изоляции корня: 1,5 < *x* < 2.

Рисунок 7

Теперь можно найти корень уравнения на отрезке [1.5,2] методом последовательных приближений.

Введём начальное приближение в ячейку **B25=1,5**, и само уравнение, со ссылкой на начальное приближение, в ячейку **C25** =**EXP(B26)-(2*B26-1)^2** (рис. 8).

			* *				
C2	26	▼ ÷ ⊃	X 🗸	f _x =EX	(P(B26)-(2*	B26-1)^2	
	А	В	С	D	Е	F	(
23							
24	Корни по	линома					
25	x1=	0	0				
26	x2=	1,5	0,481689				
27	x3=	3,8	1,141184				
0							

Рисунок 8

Далее воспользуемся инструментом **Подбор параметра** и заполним диалоговое окно **Подбор параметра** (рис. 9).

Подбор параметра					
Установить в <u>я</u> чейке:	\$C\$26				
Зна <u>ч</u> ение:	0				
<u>И</u> зменяя значение ячейки:	\$B\$26				
ОК	Отмена				

Рисунок 9

Результат поиска решения будет выведен в ячейку С25 (рис. 10). Третий корень находим аналогично

23				
24	Корни по	линома		
25	x1=	0	0	
26	x2=	1,629052	3,14E-06	
27	<u>х</u> 3=	3,733359	0,000909	
28				

Рисунок 10